Lớp 11

Vật lý 11 Bài 11: Phương pháp giải một số bài toán về toàn mạch

Như chúng ta đã biết, các nguồn được ghép thành các bộ nguồn, các điện trở được ghép với nhau theo những cách khác nhau. Trong trường hợp đó ta cần nhận dạng và phân tích xem các nguồn và điện trở đã được mắc như thế nào. Bài học hôm nay sẽ giúp chúng ta có thêm nhiều kỹ năng hơn trong việc vận dụng định luật Ôm để giải các bài tập về mạch điện.

Mời các em cùng tìm hiểu nội dung bài mới- Bài 11: Phương pháp giải một số bài toán về toàn mạch nhé. 

Bạn đang xem: Vật lý 11 Bài 11: Phương pháp giải một số bài toán về toàn mạch

\(I = \frac{E}{{{R_N} + r}};\,\,E = I\left( {{R_N} + {\rm{ }}r} \right)\)

\(U = I{R_N} = E-{\rm{ }}Ir;{A_{ng}} = E.I.t;{P_{ng}} = EI;\)

\(A = U.It{\rm{ }};{\rm{ }}P = U.I\)

1.2. Vận dụng

Bài 1:

Cho sơ đồ mạch điện kín như hình vẽ: Trong đó mỗi nguồn có \(\xi  = 3.3\;V,r = 0.06\;\Omega \). 

Trên đèn bóng Đ1 có ghi 6V – 3W; bóng đèn Đ2 ghi 2.5V – 1.25W. Điều chỉnh \(\mathop R\nolimits_{b1} \) và  \(\mathop R\nolimits_{b2} \) sao cho Đ1 và Đ2 sáng bình thường.

1. Tính giá trị  \(\mathop R\nolimits_{b1} \) và  \(\mathop R\nolimits_{b2} \)

2. Tính công suất của bộ nguồn và hiệu suất của bộ nguồn khi đó?

Hướng dẫn giải

1.

  • Suất điện động và điện trở trong của bộ nguồn: 

\(\mathop \xi \nolimits_b  = \;2\xi  = \;6,6\;V;\;\mathop r\nolimits_b  = \;2r = 0,12\;\Omega \;\)

  • Cường độ định mức và điện trở của bóng đèn 1: 

\(\begin{array}{l}
\mathop I\nolimits_{dm1}  = \frac{{\mathop P\nolimits_{dm1} }}{{\mathop U\nolimits_{dm1} }} = 0,5A;\;\\
\mathop R\nolimits_{d1}  = \frac{{\mathop U\nolimits_{dm1}^2 }}{{\mathop P\nolimits_{dm1} }} = 12\Omega 
\end{array}\)

  • Cường độ định mức và điện trở của bóng đèn 2: 

\(\begin{array}{l}
\mathop I\nolimits_{dm2}  = \frac{{\mathop P\nolimits_{dm2} }}{{\mathop U\nolimits_{dm2} }} = 0,5A;\;\\
\mathop R\nolimits_{d2}  = \frac{{\mathop U\nolimits_{dm2}^2 }}{{\mathop P\nolimits_{dm2} }} = 5\Omega 
\end{array}\)

  • Để đèn sáng bình thường thì: 

\(\begin{array}{l}
\mathop I\nolimits_1  = \mathop I\nolimits_{dm1} \;;\;\\
\mathop I\nolimits_2  = \mathop I\nolimits_{dm2}  = \mathop I\nolimits_{Rb2} ;\\
\mathop U\nolimits_{BC}  = \mathop U\nolimits_1  = \mathop U\nolimits_2  = \mathop U\nolimits_{dm1}  = 6V
\end{array}\)

  • Khi đó:  \(\mathop I\nolimits_{BC}  = \mathop I\nolimits_{dm1} \; + \mathop I\nolimits_{dm2}  = \mathop I\nolimits_1 \mathop { + I}\nolimits_2  = 1A = \mathop I\nolimits_{AB}  = \mathop I\nolimits_{AC}  = I\)

\(\begin{array}{l}
\mathop U\nolimits_{AC}  = \mathop I\nolimits_{AC} .\mathop R\nolimits_{AC}  = \mathop \xi \nolimits_b  – \mathop I\nolimits_{AC} \mathop {.r}\nolimits_b  = 6,48V\\
 \Rightarrow \;\mathop U\nolimits_{AB}  = \mathop U\nolimits_{AC}  – \mathop U\nolimits_{BC}  = 0,48V\\
 \Rightarrow \;\mathop R\nolimits_{AB}  = \mathop R\nolimits_{b1}  = \frac{{\mathop U\nolimits_{AB} }}{I} = 0,48\Omega 
\end{array}\)

và: \(\begin{array}{l}
\mathop U\nolimits_{Rb2}  = \mathop U\nolimits_{BC}  – \mathop U\nolimits_{dm2}  = 3,5V\\
 \Rightarrow \mathop R\nolimits_{b2}  = \frac{{\mathop U\nolimits_{b2} }}{{\mathop I\nolimits_2 }} = 7\Omega 
\end{array}\)

2.

  • Công suất của bộ nguồn: 

\(\mathop P\nolimits_{bng}  = \mathop \xi \nolimits_b .I = 6,6\;W\)

  • Hiệu suất của bộ nguồn: 

\(\mathop H\nolimits_b  = \frac{{\mathop U\nolimits_{AC} }}{{\mathop \xi \nolimits_b }} = \frac{{\mathop R\nolimits_{AC} }}{{\mathop R\nolimits_{AC}  + \mathop r\nolimits_b }} = \frac{{6,48}}{{6,6}} \approx 98,2\% \)

Bài 1 :

Một mạch điện có sơ đồ như hình vẽ:

Trong nguồn điện có suất điện động 6V và có điện trở trong \(r = 2\Omega \) ,các điện trở \({R_1} = 5\Omega ;{R_2} = 10\Omega ;{\rm{ }}{R_3} = 3\Omega \)
a) Tính \({R_N}?\)
b) Tính  \(I?;\,{U_n}?\)

c) Tìm  \({U_1}?\)

Hướng dẫn giải

a. Điện trở mạch ngoài: 

\({R_N}\, = \,{R_1}\, + \,{R_2}\, + \,R{}_3\, = \,18\Omega \)

b. 

  • Dòng điện qua mạch:

\(I\, = \,\frac{\xi }{{{R_N}\, + \,r}}\, = \,0,3\,A\)

  • Hiệu điện thế mạch ngoài:

\({U_N} = I.{R_N} = 5,4{\rm{ }}V\)

c. Hiệu điện thế giữa hai đầu \({R_1}\):

\({U_1} = I{R_1} = 1,5V\)

Bài 2:

Một mạch điện có sơ đồ như hình vẽ, trong đó nguồn điện có suất điện động \(\xi  = 12,5V;{\rm{ }}r = 0,4\Omega \); bóng đèn Đ1 ghi 12V- 6W. Bóng đèn Đ2 ghi 6V- 4,5W, \({R_b}\) là biến trở.

a) Chứng tỏ rằng khi điều chỉnh biến trở \({R_b} = 8\Omega \) thì đèn Đ1 và Đ2 sáng bình thường.
b) Tính công suất nguồn và hiệu suất của nguồn điện khi đó.

Hướng dẫn giải

a)
  • Điện trở của các đèn:  

\(\mathop R\nolimits_1  = \frac{{U{{_{dm1}^2}^{}}}}{{{{\rm P}_{dm1}}}} = \frac{{144}}{6} = 24\Omega \) 

\({R_2} = \frac{{U_{dm2}^2}}{{{{\rm P}_{dm2}}}} = \frac{{36}}{{4,5}} = 8\Omega \)

  • Điện trở của mạch ngoài:

\({{R_{b2}} = {R_b} + {R_2} = 8 + 8 = 16\Omega }\)

⇒ \({R_N} = \frac{{{R_1}.{R_{b2}}}}{{{R_1} + {R_{b2}}}} = \frac{{24.16}}{{24 + 16}} = 9,6\Omega \)

Vậy, \({R_N} = 9,6\Omega \)

  • Cường độ dòng điện chạy trong toàn mạch:

\({\rm I} = \frac{\xi }{{{R_N} + r}} = \frac{{12,5}}{{9,6 + 0,4}} = 1,25{\rm A}\)

  • Hiệu điện thế mạch ngoài:

\({U_N} = I.{R_N} = 1,25.9,6 = 12V\)

  • Vì Đ1 mắc song song với (Đ2 nối tiếp biến trở) nên :

\({U_1} = {U_{b2}} = {U_N} = 12V\)

\( \Rightarrow {{\rm I}_1} = \frac{{{U_1}}}{{{R_1}}} = \frac{{12}}{{24}} = 0,5{\rm A}\)

Ta có: \({{\rm I}_{b2}} = \frac{{{U_{b2}}}}{{{R_{b2}}}} = \frac{{12}}{{16}} = 0,75{\rm A}\)

  • Mà Đ2 mắc nối tiếp với biến trở nên : \({I_b} = {I_2} = {I_{b2}} = 0,75A\)

\(\begin{array}{l}
{{\rm I}_{dm1}} = \frac{{{{\rm P}_{dm1}}}}{{{U_{dm1}}}} = \frac{6}{{12}} = 0,5{\rm A};\\
{{\rm I}_{dm2}} = \frac{{{{\rm P}_{dm2}}}}{{{U_{dm2}}}} = \frac{{4,5}}{6} = 0,75{\rm A}
\end{array}\)

  • Ta thấy :

\({{\rm I}_1} = {{\rm I}_{dm1}};{{\rm I}_2} = {{\rm I}_{dm2}} \Rightarrow \) Hai đèn sáng bình thường

b. 

  • Công suất của nguồn:

\({{\rm P}_{ng}} = \xi .{\rm I} = 12,5.1,25 = 15,625\)

  • Hiệu suất của nguồn:

\(H = \frac{{{U_N}}}{\xi } = \frac{{12}}{{12,5}} = 0,96 = 96\% \)

Bài 3:

Cho mạch điện có sơ đồ như hình vẽ, trong đó nguồn điện có suất điện động \(\varepsilon = 12V\), và điện trở trong là \(r = 1,1 \Omega\); điện trở \(R = 0,1 \Omega\).

 

a) Điện trở \(x\) phải có trị số bao nhiêu để công suất tiêu thụ ở ngoài mạch là lớn nhất?

b) Điện trở \(x\) phải có trị số bao nhiêu để công suất tiêu thụ ở điện trở này là lớn nhất? Tính công suất lớn nhất đó.

Hướng dẫn giải:

a. 

  • Tính điện trở \(x\) để công suất tiêu thụ ở mạch ngoài là lớn nhất.

  • Mạch ngoài gồm điện trở R mắc nối tiếp với điện trở x, có điện trở tương đương là: \(R_N = R + x = 0,1 + x\).

  • Cường độ dòng điện trong trong mạch: \(I = \frac{\varepsilon }{{(R + r + x)}}\)

  • Công suất tiêu thụ mạch ngoài:

\(P=I^2.R_N=\frac{\varepsilon ^2(R+x)}{(R+r+x)^2}= \frac{\varepsilon ^2}{\left ( \sqrt{R+x}+\frac{r}{\sqrt{R+x}} \right )^2}\)

  • Để công suất P trên đây lớn nhất thì mẫu số ở về phải là nhỏ nhát. Từ bất đẳng thức cô- si ta có  \(R + x = r.\)

  • Từ đó suy ra: \(x = {\rm{ }}r-R{\rm{ }} = 1{\rm{ }}\Omega .\)

b.

  • Công suất tiêu thụ trên điện trở \(x\):

\(\begin{array}{l}
{P_x} = {R_x}.{I^2} = {R_x}{\left[ {\frac{\varepsilon }{{(R + r + x)}}} \right]^2}\\
 \Leftrightarrow {P_x} = \frac{{{\varepsilon ^2}}}{{{R_x} + 2(R + r) + \frac{{{{(R + r)}^2}}}{{{R_x}}}}}
\end{array}\)

  • Từ các tính toán trên, ta có công suất tiêu thụ của điện trở \(x\) là:

 \(P_x=I^2.x=\frac{\varepsilon ^2x}{(R+r+x)^2}= \frac{\varepsilon ^2}{\left ( \sqrt{R+x}+\frac{r}{\sqrt{R+x}} \right )^2}\)

  • Tương tự như đã làm ở trên đây, công suất \({P_x}\) lớn nhất khi \(x = R{\rm{ }} + {\rm{ }}r = 1,2{\rm{ }}\Omega .\)

  • Giá trị của công suất lớn nhất này là: 30 W.

3. Luyện tập Bài 11 Vật lý 11

Qua bài giảng Phương pháp giải một số bài toán về toàn mạch này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :

  • Vận dụng định luật Ôm để giải các bài toán về toàn mạch.

  • Vận dụng các công thức tính điện năng tiêu thụ, công suất tiêu thụ điện năng và công suất toả nhiệt của một đoạn mạch ; công, công suất và hiệu suất của nguồn điện.

  • Vận dụng được các công thức tính suất điện động và điện trở trong của bộ nguồn nối tiếp, song song để giải các bài toán về toàn mạch.

3.1. Trắc nghiệm

Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Vật lý 11 Bài 11 cực hay có đáp án và lời giải chi tiết. 

  • Câu 1:

    Cho mạch điện có sơ đồ như hinh vẽ, trong đó các acquy có suất điện động ξ1 = 12V; ξ2 = 6V và có các điện trở trong là không đáng kể. Các điện trở \(R_1 = 4 \Omega R_2 = 8 \Omega\). Tính cường độ dòng điện chạy trong mạch.

    • A.
      \(0,5A\)
    • B.
      \(1,0A\)
    • C.
      \(1,5A\)
    • D.
      \(2,5A\)
  • Câu 2:

    Một mạch điện có sơ đồ như hình . Trong nguồn điện có suất điện động 6V và có điện trở trong \(r = 2\Omega \) ,các điện trở \({R_1} = 5\Omega ;{R_2} = 10\Omega ;{\rm{ }}{R_3} = 3\Omega \) . Tính hiệu điện thế mạch ngoài \({U_N}\).

    • A.
      \(2,7V\)
    • B.
      \(5,4V\)
    • C.
      \(3,6V\)
    • D.
      \(4.0V\)
  • Câu 3:

    Cho mạch điện có sơ đồ như hình vẽ, trong đó nguồn điện có suất điện động \(\varepsilon = 12V\), và điện trở trong là \(r = 1,1 \Omega\); điện trở \(R = 0,1 \Omega\). Tính điện trở \(x\) để công suất tiêu thụ ở mạch ngoài là lớn nhất.

    • A.
      \(1\Omega \)
    • B.
      \(2\Omega \)
    • C.
      \(3\Omega \)
    • D.
      \(4\Omega \)

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức về bài học này nhé!

3.2. Bài tập SGK và Nâng cao 

Các em có thể xem thêm phần hướng dẫn Giải bài tập Vật lý 11 Bài 11 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

4. Hỏi đáp Bài 11 Chương 2 Vật lý 11

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Vật lý THPT Long Xuyên sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

Đăng bởi: THPT Số 2 Tuy Phước

Chuyên mục: Giáo Dục Lớp 11

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button

Bạn đang dùng trình chặn quảng cáo!

Bạn đang dùng trình chặn quảng cáo!